A. Cabo, R. Klaassen
(2018). ACTIVE LEARNING IN REDESIGNING MATHEMATICS COURSES FOR ENGINEERING STUDENTS.
12. “Prepare, Participate, Practice”: active learning in designing basic maths courses for engineering students at TU Delft works! The PRoject Innovation Mathematics Education (PRIME) at Delft University of Technology (TU Delft) is all about redesigning mathematics courses for engineers. This paper describes the process of developing, implementing, evaluating and implementing again of three basic courses at TU Delft using a blended learning approach developed by a growing team of teachers from the mathematics department. Our findings suggest that the approach taken enhances students’ learning performance in maths education. The main results show that students have a more active learning experience compared to the traditional setup of these courses, leading to more engagement, more interaction and better results. An important role is played by meaningful examples taken from the engineering faculty where the students are studying, showing students from that faculty what role the mathematics play in their field of interest. This is also used to develop their skills in mathematical modelling.

Authors (New):

Annoesjka Cabo

Renate Klaassen

Affiliations:

Delft University of Technology, Netherlands

Keywords:

Engineering education

Blended Learning

mathematics

team-based development

Active learning

CDIO Standard 1

CDIO Standard 2

CDIO Standard 8

CDIO Standard 9

CDIO Standard 11

CDIO Standard 12

Reference:

Artino, A.R.Jr. (2012), Academic Self-Efficacy: From Educational Theory to Instructional Practice, Perspectives on Medical Education, 1(2): 76–85. :

10.1007/s40037-012-0012-5

Bandura A. (1997), Self-efficacy: the exercise of control, New York: W. H. Freeman and Company:

Bernard, R.M., Borokhovski, E., Schmid, . R.F, Tamim R.M., Abrami, P.C. (2014). A meta-analysis of blended learning and technology use in higher education: From the general to the applied. Journal of Computing in Higher Education, vol. 26, no. 87, pp. 87-122:

Bonk, C.J., Graham C.R (2006). The handbook of blended Learning: Global perspectives, local designs, Hoboken (NJ): John Wiley & Sons:

Boud, D. and Falchikov, N. (2006) Aligning assessment with long-term learning. Assessment and Evaluation in Higher Education 31 (4) pp. 399-413, http://www.tandf.co.uk/journals/carfax/02602938.html:

Cabo, A.J., Makaveev, M. (2018). Strengthening the connections between Aerospace Engineering and Mathematics. Report 4TU.CEE.(Draft):

Chickering, A.W., Gamson, Z.F. (1987). Seven principles for good practice in undergraduate education American Association of Higher Education Bulletin, vol. 39, no. 7, pp. 140-141. :

http://dx.doi.org/10.1016/0307-4412(89)90094-0

Deci, E.L. & R.M. Ryan (eds.) (2002). Handbook of Self-Determination Research. New York: University of Rochester Press.:

Edström, K., Kolmos, A. (2008) PBL and CDIO: complementary models for engineering education development. European Journal of Engineering Education, vol 39, pp. 539-555:

Freeman, S., Eddy, S.L., McDonough, M., Smith, M.K., Okoroafor, N., Jordt, H., Wenderoth, M.P. (2014) Active learning increases student performance in science, engineering, and mathematics PNAS, vol. 111, no. 23, pp. 8410–8415.:

Gordijn, J., Oosterhout, A., & Dijkstra, W. (2017). Innovation mathematics project, blended education in practice: a case study at Delft University of Technology. Edulearn17. Proceedings :

10.21125/edulearn.2017.0881

Hattie, J.A., Temperley, H. (2007) The power of feedback. Review of educational research, vol. 77, no. 1, pp.81-112:

Kaminsky, J.A., and Sloutsky, V.M. (2012). Representation and transfer of abstract mathematical concepts in adolescence and young adulthood. In V.F. Reyna, S.B. Chapman, M.R. Dougherty, and J. Confrey (Eds.), The adolescent brain: Learning, reasoning, and decision making (pp. 67-93). Washington, DC: American Psychological Association.:

Kamp, A. (2016). Engineering education in a rapidly changing world. Rethinking the vision for higher engineering education. Second revised edition. Delft.:

Kirschner, P. Sweller, J. Clark, R.E. (2006). Why minimal instruction does not work: an analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational psychologist, vol. 42, no. 2, pp. 75-86:

Pinxten, M. (2018), presentation 26 march 2018, KU Leuven, study visit – 4TU Centre for Engineering Education, presentation on request.:

Rittle-Johnson, B., & Schneider, M. (2015). Developing conceptual and procedural knowledge in mathematics. In R. Cohen Kadosh & A. Dowker (Eds.), Oxford handbook of numerical cognition, pp. 1102-1118. Oxford, UK: Oxford University Press. :

10.1093/oxfordhb/9780199642342.013.014

Szeto, E. (2014). A comparison of online/face-to-face students' and instructor's Experiences: Examining blended synchronous learning effects. Procedia - Social and Behavioral Sciences, vol. 116, no. 21, pp. 4350-4254.:

TU Delft (2017), https://youtu.be/WwXneDliQLw:

TU Delft (2018), www.math-explained.tudelft.nl:

Veenstra- van Dijk, L. (2000), Activating instruction in lectures a study into the possibilities and the effects, Master Thesis TU Delft, Delft University Press.:

ISBN 90-407-2054- I

Vos, I. (2016). Blended Learning Mathematics. Paper presented at 10th International Technology, Education and Development Conference, Spain, 2016 Mar 7-9. :