
Removing Lectures from a Computer Programming Course –
A Quantitative Study

Christian Thode Larsen12, Sebastian Gross3, J. Andreas Bærentzen1

1Technical University of Denmark (DTU), Denmark, 2Danish Research Center for Magnetic
Resonance (DRCMR), Denmark 3MathWorks GmbH, Germany

ABSTRACT

Computer programming is a discipline that is becoming increasingly important to today’s
engineering practice and society overall, and it is used extensively and intensively in several
fields. Examples can be found in mechanical, electrical, or chemical engineering, and many
other areas. As such, it is common that higher education institutions teach at least one basic
programming course on the subject in every engineering degree program.

This means that programming is taught to a variety of engineering students with significantly
different backgrounds and expectations. Consequently, it is important that all students — in
particular those that had less prior exposure to computational methods and programming in
their past — get sufficient time to gain experience with their programming tools.

Lectures are often chosen as the standard teaching method when designing a course
structure. This also applies to programming courses. Two main reasons for this are the
effectiveness of informing a large group of students in a very short period of time, and the
efficiency of doing so while involving only a single teacher.

However, we believe that programming is much better taught and learned with a ''hands-on''
approach. Therefore, we argue that lectures can be safely removed from programming
courses and replaced with extended lab exercise sessions where teaching assistants
circulate and interact with the students individually when needed. This gives students
additional time to build up experience with the programming environment consisting of the
programming language, interface, and associated tools.

We support our argument with a discussion of both quantitative metrics and a summary of
qualitative statements drawn from programming course evaluations and student feedback.
These evaluations were gathered in courses over a series of semesters — before and while
the course followed our suggested model.

We conclude from the observed data that removing lectures from the course not only
increased overall student satisfaction, but also bolstered the learning outcome.

Furthermore, we show that an appropriate adaptation of better teaching material, after having
removed the lectures, yielded further improvement in these categories.

KEYWORDS

Programming, MATLAB, Lectures, Teaching, Standards: 2, 5, 8, 11.
Proceedings of the 11th International CDIO Conference, Chengdu University of Information Technology,
Chengdu, Sichuan, P.R. China, June 8-11, 2015.

INTRODUCTION

Jeanette M. Wing coined the phrase computational thinking in 2006 and referred to it as a
universally applicable attitude and skill set for everyone (Wing, Computational Thinking,
2006). She highlights that the process of transformation that started decades ago in
engineering and science has long since spread to numerous other disciplines (Wing,
Computational Thinking – What and Why?, 2010).

Computers, programming, and computational thinking are at the heart of countless
technological, economical, and social developments and have become a part of everyday
life. Barr and Stephenson clearly state “All of today’s students will go on to live a life heavily
influenced by computing, and many will work in fields that involve or are influenced by
computing.” (Barr & Stephenson, 2011). They leave no doubt that computer science
education is vital for everyone and here to stay. The design of engineering and science
degree programs, as well as neighboring disciplines, must address this growing need in
particular.

The EUR-ACE Framework Standards for the Accreditation of Engineering Programs (ENAEE
Administrative Council, 2008) list six outcomes of engineering programs. Those include not
only knowledge and understanding, but also engineering design, practice, and analysis,
investigation, and transferable skills. The learning outcomes defined in the CDIO syllabus 2.0
(Standard 2) (Crawley E. F., Malmquist, Lucas, & Brodeur, 2011) list ‘technical knowledge
and reasoning’ as the first important aspect; however, many others follow. The list includes
problem solving, experimentation, knowledge discovery, teamwork, design, implementation,
and operation. The CDIO Standard 4 describes experiences gained from design exercises
and problem solving. These introductions to the engineering world are meant to be both
instructional and motivational in nature. Standard 5 drives this further to engage students in
design-build experiences of larger scales. These aspects are meant to be cornerstones of
the engineering curricula (Crawley E. F., Malmquist, Östlund, & Brodeur, 2007). The National
Academy of Engineering (National Academy of Engineering, 2005) demands the iterative
process of designing, predicting performance, building, and testing should be part of the
curriculum from the beginning of the degree program. While all these mentioned
competencies are fairly general, they are also very important in relation to programming.

At the same time, the changes in education are evident. We are moving from traditional
lectures to more interactive communication. Classrooms are flipped and simple knowledge
transfer is moved to video sessions (Lage, Platt, & Treglia, 2000). Lab classes go beyond
experiments that prove taught theory in experiments to connect acquired knowledge with the
real world beyond the wall of our education institutions (Thomsen, et al., 2010) (Thomsen,
Scenario Based Learning in Electronic and Electrical Engineering UCL, 2013). Practical
classes exposing the students to real tasks instead of unidirectional knowledge transfer are
becoming more and more popular (Behrens, Atorf, & Aach, 2010) (Gross, Schlosser, &
Schneider, 2014).

The provocative question “What’s the use of lectures?” has been raised by a likewise named
book in 1971 (Bligh, 1971). After results drawn from an advanced biology class, a work from
the year 2005 suggests that even a partial shift toward a more interactive and collaborative
class format can lead to significant increases in student learning gains. (Knight & Wood,
2005).

Proceedings of the 11th International CDIO Conference, Chengdu University of Information Technology,
Chengdu, Sichuan, P.R. China, June 8-11, 2015.

In this paper, we follow these cues and remove traditional lectures from a computer
programing course.

The remainder of the paper is organized as follows: The second section describes the course
structure and the implemented changes over a period of several years at DTU. The third
section explains how the quantitative and qualitative data was acquired, and the fourth
section highlights the results. The fifth section discusses the results with respect to target
audience, knowledge retention, influence of structural changes to the course, and underlying
effects. The sixth section suggests future developments for the course. The final section
draws conclusions.

COURSE STRUCTURE AND IMPLEMENTED CHANGES

Today the DTU MATLAB course is run in two different versions each semester. One version
takes place during each of the spring and autumn semesters for 13 weeks, and the other is
taught for three weeks in January and June. The 13-week versions runs in parallel with other
courses, while the three-week versions are concentrated one-course periods.

While the duration of the two versions is different, both versions utilize exactly the same
structure, content, and number of sessions. The students work with the curriculum for
approximately two-thirds of the sessions, while the remaining sessions are used for project
work. The course is followed predominantly by first-year students from many different
bachelor degree programs. A non-exhaustive list of programs includes chemistry,
biotechnology, mathematics, physics, and innovation and design.

The MATLAB course has run in several stages of evolution for many years, as highlighted in
Table 1. Before June 2010, lectures (1-2 hours) and lab exercises alternated. In June 2010
the lectures were removed in favor of longer lab exercises (4 hours) with extended
supervision of the students by teaching assistants (3 hours). Until June 2012 the MATLAB
course used a fairly inhomogeneous teaching note written by several authors from DTU.

During this period, the noncurriculum sessions consisted of three projects. Two of these were
dedicated to learning, where the students would solve a programming task — given a fairly
broad problem specification — as a team effort (two to three people per team). The students
would receive feedback on the quality of their work by teaching assistants.

The final project constituted the exam, with each student writing his or her own program
given a smaller and much more specific problem specification. Grading was based on
evaluation of the exam project program code submitted by each student. Some evaluation
criteria were program quality, efficiency, accuracy, structure, and commenting.

In June 2012 a number of changes were introduced. First, the teaching note was replaced by
the book MATLAB: A Practical Introduction to Programming and Problem Solving by Stormy

Proceedings of the 11th International CDIO Conference, Chengdu University of Information Technology,
Chengdu, Sichuan, P.R. China, June 8-11, 2015.

Table 1. Course structure and implemented changes

Time Structure Examination (final project) Teaching Material
'08 – '10 Lectures + lab class + projects Code evaluation Inhomogeneous teaching note
'10 – '12 Curriculum lab class + projects Code evaluation Inhomogeneous teaching note
'12 – '14 Curriculum lab class + projects Code + written report evaluation MATLAB book (Attaway, 2013)

Attaway (Attaway, 2013) in order to improve teaching material homogeneity. Second, all
exercises — previously from the teaching note — were also replaced by those from the book.
Third, one of the two team-based learning projects was removed to make room for a slightly
extended curriculum due to the new book. Also, evaluation of the students’ work was
changed from graded feedback to 'on-the-fly' feedback during class.

Finally, the problem description in the exam project was made broader and more open,
thereby allowing each student more freedom in his or her design and implementation
choices. Also, the students were now required to report and discuss and critically assess
their design choices, implementation, and program functionality.

Connection to CDIO Standards

The exercise sessions, as well as learning projects, rely heavily on active learning, which is
the goal of CDIO Standard 8. The structure of all projects involves a design and an
implementation stage, which is key in CDIO Standard 5. Likewise, many exercises in the
curriculum involve concepts from Standard 5.

The course is structured around a list of (publicly available) learning objectives. This list also
forms the basis for the exam evaluation criteria, and is used as guideline for the teacher's
assessment of how many objectives were met, given the quality of report and code. As such,
the course's learning objectives are intimately linked with CDIO Standard 2 and 11.

DATA ACQUISITION

Quantitative and qualitative evaluations of the MATLAB course have been collected for
several years. We present assessments from the beginning of 2008 until summer 2014.

The quantitative assessments cover the students’ perception of how much the individual
student learned, to what extent active participation was required to follow the course, the
quality of the teaching material, how well the teacher provided feedback on submitted work,
and finally the overall quality of the course.

All quantitative assessments operate on a scale from 1 to 5, where 1 is the lowest possible
score and 5 is the highest. All quantitative data is available online1. The qualitative data is
confidential, for which reason we provide only a summary.

RESULTS

Quantitative evaluations

The average quantitative assessments for all periods where the MATLAB course ran
between 2008 and 2014 have been presented in Figure 1. Each category has been depicted
with its own hatching, transparent color. Also shown are the periods where the removal of
lectures and the introduction of the MATLAB book took place (solid colors), as well as
general trends in the different categories (dotted lines).

1 http://www.kurser.dtu.dk/
Proceedings of the 11th International CDIO Conference, Chengdu University of Information Technology,
Chengdu, Sichuan, P.R. China, June 8-11, 2015.

When comparing the trend lines to the categories, there seems to be a tendency towards a
climb in evaluations after the lectures were removed, except for the teacher feedback
category. This suggests that the students reacted positively to this change.

Proceedings of the 11th International CDIO Conference, Chengdu University of Information Technology,
Chengdu, Sichuan, P.R. China, June 8-11, 2015.

Figure 1. Evaluation scores from 3 week and 13 week periods. Each category has been illustrated with its own
hatching, semi-transparent color. The time points where lectures where removed and the MATLAB book
introduced, has a solid color. The dotted lines signifies the overall positive or negative trend in course
development within each category.

In particular the category of teaching material stands out, revealing that replacement of the
inhomogeneous teaching note (by the MATLAB book) was received very positively by the
students. This suggests that good teaching material is very important to the students,
perhaps even more so than the removal of lectures.

Also, interestingly, inspection of the learning a lot and teaching material categories, and to
some extent the active participation category, suggest there is a link between how much the
students feel they learned, how active they feel they have been in the course, and the
material they have been studying.

Two periods stand out with significantly poor student evaluations: the spring of 2012 and the
autumn of 2013. Possible explanations for this are that, in one case, the teacher (T1) may
have lacked motivation due to ending employment. In the other case, the teacher (T4) who
had no prior experience with the course went on a sudden leave of absence. This resulted in
other people, also with no prior experience, having to take on the teaching responsibility
without proper preparation.

Finally, it can be seen that the three-week periods consistently receive higher average scores
when compared to their 13-week counterparts.

As depicted in Table 2, a number of different teachers have been responsible for the
MATLAB course. TX represents various teachers before T1 took over and introduced a more
computer-scientific approach in the inhomogeneous teaching note. T2 introduced the
removal of lectures as well as the new teaching material. T3 collaborated with T2 in order to
take over the new structure. T4 was a substitute teacher during a single period in the autumn
2013.

Also shown in Table 2 are the number of participants and received evaluations during each
period. In general, between 25% and 50% of the students evaluate the course. Note that the
June 2013 and January 2014 courses suffer from fewer evaluations where, in particular,
January 2014 is statistically weak with only 20/151 evaluations.

Proceedings of the 11th International CDIO Conference, Chengdu University of Information Technology,
Chengdu, Sichuan, P.R. China, June 8-11, 2015.

Table 2. Distribution of teachers, the number of evaluations received, and the number of
participants during the different periods.

Jan
'08

Jun
'08

Jan
'09

Jun
'09

Jan
'10

Jun
'10

Jan
'11

Jun
'11

Jan
'12

Jun
'12

Jan
'13

Jun
'13

Jan
'14

Jun
'14

Teacher TX TX TX T1 T1 T1 T1 T2-3 T2 T2 T2 T3 T3 T3

Evaluations 50 98 84 123 81 136 49 131 38 125 44 53 20 95

Participants 94 202 233 238 139 255 140 317 99 310 148 283 151 355

A '08 A '09 S '10 A '10 S '11 A '11 S '12 A '12 S '13 A '13 S '13

Teacher TX T1 T1 T1 T1 T1 T1 T2 T3 T4 T3

Evaluations 118 104 26 79 56 53 52 52 52 63 43

Participants 202 156 51 166 113 149 104 161 152 151 150

Summary of qualitative evaluations

Before the lectures were removed, many students would express displeasure with their
presence, while few expressed satisfaction. Afterwards, a significant number of students
reported appreciation for the increase in hands-on programming time, while few suggested
that lectures would have been nice. A number of students felt that they needed to work
harder to get through the course, but also that they learned a lot. This trend continued after
introducing the MATLAB book and the new exam project. Only a few students requested
more feedback.

DISCUSSION

The success or failure of any course results from a mix of many different factors. Now we
discuss some of the factors we believe to be most important for our observed data, as well
as for running a successful programming course.

Removal of lectures

It is perhaps not obvious how removing lectures can contribute to an increased appreciation
of the course. Our hypothesis is that the removal of lectures made room for more hands-on
programming, and this has led to greater learning — thus, greater course appreciation.

Influence of the teacher

Not surprisingly, the teacher and teaching assistants are key to running a successful course.
Specifically, their experience in teaching and their ability to motivate and 'meet the student
where he or she is', are important. Upon careful comparison between Figure 1 and Table 2, it
becomes clear that the evaluations depend heavily on the actual teacher in charge of the
course. As such, using and critically assessing student evaluations is instrumental in
choosing the right teacher and teaching assistants for a course.

Restructuring a course

Whenever the structure of a course is modified, it is likely to run into unforeseen issues with
teaching material, exercises, and projects. Typically, the teacher will not be able to
completely address these until the second iteration of the course is run.

One example was the introduction of the new MATLAB book. With the book followed a whole
new range of exercises, but they turned out to be too many and they were too extensive. For
this reason, the students became discouraged. As a result, the exercises were trimmed and
prioritized to help the students move along the learning curve more easily.

This example serves to illustrate that there is a tradeoff between stability and changing the
course structure too often. Minor changes should be implemented whenever necessary in
order to obtain obvious improvements. Major changes such as changing the course structure
should be done rarely and only if there is an apparent need to do so. Furthermore, every new
structure should be allowed time for refinement and tuning.

Proceedings of the 11th International CDIO Conference, Chengdu University of Information Technology,
Chengdu, Sichuan, P.R. China, June 8-11, 2015.

Targeting the audience properly

There are large differences between the students from different degree programs as a group,
as well as between the individual backgrounds of students. Therefore, students from certain
degree programs will be more inclined to respond positively to a course structure without
lectures, which means that it leaves them with more responsibility for learning.

It is difficult to draw a clear trend from the data that supports this hypothesis since students
mix between the different periods. In general, we have observed that students from technical
degree programs such as electrical, mechanical or mathematical engineering respond more
favorably when compared to interdisciplinary degree programs such as biotechnology or
design and innovation.

Ideally, the course content should target each study line specifically, with more specialized
examples and a refined course curriculum. This is, however, a resource demanding task to
perform, which is obviously why it is rarely done.

Retention

Figure 1 revealed that the 3-week period received significantly better evaluations compared
to the 13-week period. This may be due to short-term retention. Some students express that
it is difficult to learn and remember a given topic from one week to the next. Far fewer
difficulties have been observed during the 3-week periods. We believe that an intense period
of focused learning with a lot of hands-on time to be the best way to ensure short-term
retention.

This does not address the issue of long-term retention. Some students lack motivation
'because they are not going to do programming in the future'. Other students find that they do
need programming later on but forgot what they learned during the course.

Ultimately, programming is a craftsmanship that needs to be learned and maintained. There
seems to be no easy solution to this other than to have the students program regularly in as
many courses as possible throughout their studies. However, this model is reasonable for
only a subset of degree programs.

Declining feedback score

The removal of one of the team-based learning projects, and changing evaluation of the
second one to an 'on-the-fly' process, is a possible explanation for the decline in feedback
score. While the students have more confrontation time with the teaching assistants without
lectures, they may not consider this to be feedback to the same extent as an evaluated
(possibly graded) project. Another reason could be that the teacher is less visible.

Interestingly, we did not observe that the students felt, in general, that they needed more
feedback. A possible explanation is that the feeling of having learned a lot outweighs the
need for feedback. Even so, it follows that a better model for providing feedback could be
employed. Possible ways to improve this could be, for example, regularly scheduled reviews
(depending on session type) of the implemented exercises.

Proceedings of the 11th International CDIO Conference, Chengdu University of Information Technology,
Chengdu, Sichuan, P.R. China, June 8-11, 2015.

FUTURE WORK

In the future, we hope to address the one negative trend: teacher feedback. To some extent,
feedback can be improved by using automatic code assessment software, but there is also a
need for more direct communication between teacher and students. The challenge here is
that the number of students is quite large. However, some time is freed up by not having to
give lectures. Teaching assistants provide feedback. Finally, we are also experimenting with
Internet fora as a means for communicating with students.

While we are very satisfied that the described changes led to an improvement in learning, the
course is being fundamentally changed yet again — this time not to improve quality, but
because the course is being used in several educations, all needing slightly different learning
outcomes. For this reason we are investigating modularization of the course in order to make
it more adaptable, such that all of our client engineering programs can be accommodated.

CONCLUSION

We have presented a number of changes that were introduced in a computer programming
course over a number of years. Specifically, we have discussed how lectures were removed,
how the teaching material was later replaced, and how the course structure was modified.
Quantitative and qualitative data have been provided, which documents how the students
evaluated the course before, during, and after these changes.

Unfortunately, the evaluations are clearly affected by many factors that are outside of this
study and outside of our control: who the teacher is and the body of students following the
course are the most obvious. The evaluations are also influenced by whether the course is
taught during the 3-week or the 13-week period. Despite these shortcomings in the
measurements, we believe that the data shows two clear trends. First, the students feel a bit
more left alone: there is a decrease in how much feedback they feel they receive. On the
other hand, there is a positive trend when it comes to all other statistics pertaining to how
much the course is appreciated. This indicates that the changes are an improvement, and
while the course is not in a finished form (and never will be), we regard the described
changes as a positive step in the continuing development of the course.

REFERENCES

Attaway, S. (2013). MATLAB: A Practical Introduction to Programming and Problem Solving (3rd ed.).
Butterworth-Heinemann.

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: what is Involved and what
is the role of the computer science education community? (ACM, Ed.) ACM Inroads, 2(1), 48-
54.

Behrens, A., Atorf, L., & Aach, T. (2010). Teaching Practical Engineering for Freshman Students using
the RWTH - Mindstorms NXT Toolbox for MATLAB. In E. P. Leite, MATLAB - Modelling,
Programming and Simulations (pp. 41-65). SCIYO.

Bligh, D. A. (1971). What's the use of lectures? Hawfordshire, England: New Barnet.
Crawley, E. F., Malmquist, J., Lucas, W. A., & Brodeur, D. R. (2011). The CDIO Syllabus v2.0 - An

Updated Statement of Goals for Engineering Education. Proceedings of the 7th International
CDIO Conference. Copenhagen.

Crawley, E. F., Malmquist, J., Östlund, S., & Brodeur, D. R. (2007). Rethinking Engineering Education:
The CDIO Approach. New York: Springer Verlag.

Proceedings of the 11th International CDIO Conference, Chengdu University of Information Technology,
Chengdu, Sichuan, P.R. China, June 8-11, 2015.

ENAEE Administrative Council. (2008). Framework Standards for the Accreditation of Engineering
Programmes. EUR-ACE.

Gross, S., Schlosser, J., & Schneider, D. (2014). Integrating Introduction to Engineering Lectures with
a Robotics Lab. Proceedings of the 10 International CDIO Conference. Barcelona, Spain.

Knight, J. K., & Wood, W. B. (2005). Teaching More by Lecturing Less. (E. Chudler, Ed.) Cell Biology
Education, 4(4), 298-310. doi:10.1187/05-06-0082

Lage, M. J., Platt, G. J., & Treglia, M. (2000). Inverting the Classroom: A Gateway to Creating an
Inclusive Learning Environment. Journal of Economic Education, 30-43.

National Academy of Engineering. (2005). Educating the Engineer of 2020: Adapting Engineering
Education to the New Century. Washington D.C: National Academies Press.

Thomsen, B. (2013, 3). Scenario Based Learning in Electronic and Electrical Engineering UCL. (T. a.
Workshop, Ed.) Retrieved 11 11, 2013, from http://www.youtube.com/watch?v=sh6x8h-3eEE

Thomsen, B., Renaud, C., Savory, S., Romans, E., Mitrofanov, O., Rio, M. Mitchell, J. (2010).
Introducing Scenario Based Learning - Experiences from an Undegraduate Electronic and
Electrical Engineering course. Education Engineering (EDUCON) (pp. 953 – 958). Madrid,
Spain: IEEE.

Wing, J. M. (2006). Computational Thinking. (ACM, Ed.) Communications of the ACM, 49(3), 33-35.
Wing, J. M. (2010). Computational Thinking - What and Why? Retrieved 10 22, 2013, from

http://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-why

BIOGRAPHICAL INFORMATION

Christian Thode Larsen, M.Sc., has a bachelor’s degree in software technology and a
master’s degree in digital media engineering from DTU. He has been involved with the
MATLAB programming course for a number of years, first as a teaching assistant and later
as the teacher. He is currently pursuing a Ph.D. degree in medical image analysis and
machine learning at DTU Compute and the Danish Research Center for Magnetic
Resonance.

Sebastian Gross, Ph.D., studied at RWTH Aachen University and received his electrical
engineering degree in 2007 and his Ph.D. in image processing in 2014. He is now working as
an education technical specialist at MathWorks. His main function is the support of teaching
staff in tool application, curriculum design, and the general improvement of technical teaching
at all levels of education.

J. Andreas Bærentzen, Ph.D., is an associate professor at DTU Compute. His research
focuses on the representation of digital shape and, more generally, on computer graphics.
His teaching is mostly on geometry processing and real-time graphics. He has been director
of studies for the Digitial Media Engineering M.Sc.Eng. programme at the Technical
University of Denmark. He currently serves as chairman of the study board at DTU Compute.
He has supervised three Ph.D. projects, 22 MSc projects, and 16 BSc/BEng projects.

Corresponding author

Christian Thode Larsen
DTU Compute
Richard Pedersens Plads, Building 324
DK-2800 Kongens Lyngby
+45 28 58 07 87
christian.thode.larsen@gmail.com

This work is licensed under a Creative
Commons Attribution-NoDeriv ative s 4 .0
International License.

Proceedings of the 11th International CDIO Conference, Chengdu University of Information Technology,
Chengdu, Sichuan, P.R. China, June 8-11, 2015.

http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US

